FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis
نویسندگان
چکیده
Global germ line loss of fat mass- and obesity-associated (FTO) gene results in both the reduction of fat mass and lean mass in mice. The role of FTO in adipogenesis has been proposed, however, that in myogenesis has not. Skeletal muscle is the main component of body lean mass, so its connection with FTO physiologic significance need to be clarified. Here, we assessed the impact of FTO on murine skeletal muscle differentiation by in vitro and in vivo experiments. We found that FTO expression increased during myoblasts differentiation, while the silence of FTO inhibited the differentiation; in addition, skeletal muscle development was impaired in skeletal muscle FTO-deficient mice. Significantly, FTO-promoted myogenic differentiation was dependent on its m6A demethylase activity. Mechanically, we found that FTO downregulation suppressed mitochondria biogenesis and energy production, showing as the decreased mitochondria mass and mitochondrial DNA (mtDNA) content, the downregulated expression of mtDNA-encoding genes and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) gene, together with declined ATP level. Moreover, the involvement of mTOR-PGC-1α pathway in the connection between FTO and muscle differentiation is displayed, since the expression of FTO affected the activity of mTOR and rapamycin blocked FTO-induced PGC-1α transcription, along with the parallel alteration pattern of FTO expression and mTOR phosphorylation during myoblasts differentiation. Summarily, our findings provide the first evidence for the contribution of FTO for skeletal muscle differentiation and a new insight to study the physiologic significance of RNA methylation.
منابع مشابه
Is Mitochondria Biogenesis and Neuronal Loss Prevention in Rat Hippocampus Promoted by Apigenin?
In this Correspondence, a comment to a recent paper by Nikbakht et al., published in the latest ssu of this Journal is reported. The flavone apigenin can exert both its anti-oxidant potetial via the usual enzymatic ROS scavenging system and the mitochondria biogenesis via the PGC-1α/ TFAM/NRF-1 pathway. The very interesting paper by Nikbakht et al, may earn more insighful clues about the activi...
متن کاملTHE EFFECT OF ENDURANCE EXERCISE ON THE CONTENT OF AMPK AND PGC-1Α PROTEINS IN THE LEFT VENTRICULAR HEART TISSUE OF RATS WITH TYPE 2 DIABETES
Background: One of the most important biological pathways involved in maintaining energy homeostasis is the AMPK PGC-1α pathway. Activation of this pathway through exercise can be important in regulating mitochondrial biogenesis processes and maintaining energy balance in diabetics. Therefore, the aim of this study was to investigate the effect of endurance exercise on the content of AMPK and P...
متن کاملα-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate–activated protein kinase–peroxisome proliferator-activated receptor-γ coactivator-1α signaling in the skeletal muscle of aged mice
Skeletal muscle mitochondrial dysfunction is associated with aging and diabetes, which decreases respiratory capacity and increases reactive oxygen species. Lipoic acid (LA) possesses antioxidative and antidiabetic properties. Metabolic action of LA is mediated by activation of adenosine monophosphate–activated protein kinase (AMPK), a cellular energy sensor that can regulate peroxisome prolife...
متن کاملIKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism
Although the physiological basis of canonical or classical IκB kinase β (IKKβ)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show th...
متن کاملEstrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway.
Myocyte differentiation involves complex interactions between signal transduction pathways and transcription factors. The estrogen-related receptors (ERRs) regulate energy substrate uptake, mitochondrial respiration, and biogenesis and may target structural gene programs in striated muscle. However, ERRα's role in regulating myocyte differentiation is not known. ERRα and peroxisome proliferator...
متن کامل